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Summary: A system of simple components interacting can display emergent behavior.
For instance, out of the firing of a group of neurons emerges: perception, cognition,
memory etc. The Hopfield network was a proposed recurrent neural network model
with emergent associative memory. The network can recall memorised states given a
noisy or incomplete starting point.

1 Introduction

Does computation emerge as a consequence of the behavior of large groups
of neurons? This paper proposes a recurrent neural network model that aims
to display emergent phenomena:

• Time stability of memory

• Generalisation

• Time-sequential Memory

An aim of the modelling here was for the details of the model to be largely
irrelevant, in the same way that for sound wave generation collisions of
particles are necessary, but any (sensible) inter-atomic force gives appropriate
collisions for sound waves to be generated.

There are physical systems whose behavior can be used as content ad-
dressable memory. 1 Such a physical system would be described by general 1 Recall of memory initiated by comparing

input pattern to memorised pattern.coordinates, where a particular coordinate describes an instantaneous condi-
tion of the system.

There are many such systems, but to be useful as memory it must flow
towards locally stable points, like a body of water with multiple whirl pools.
Anything close to a particular whirlpool gets pulled in.

The system has coordinates:

X = (x1, x2, ..., xN ) (1)

and locally stable points:

XA, XB , ... (2)

where:
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X = XA +∆ =⇒ X → XA (3)

In particular we want such a system 2 where any particular state can be 2 Such a system could be continuous, or
discrete like the original Hopfield Networkmade into a locally stable state.

1.1 Hopfield Network

The network consists of a set of neurons {Vi}Ni where Vi = 1 means neuron
i is on and Vi = 0 means i is off. The strength of the connection between
neuron i and j is Tij , with Tij = 0 denoting the absence of a connection
between i and j. The system is describe by a vector of N bits.

States change according to these rules:

Vi → 1

Vi → 0
if

∑
j ̸=i

TijVj
> Ui

< Ui

(4)

Where Ui is the threshold for neuron i, set to 0 unless otherwise stated.
These updates occur randomly in time and asynchronously across neurons.

1.1.1 Difference between this and perceptron

This network differs from a perceptron in three ways:

• Perceptron only has forward connections, the emergent behavior comes
from having backwards and forwards connections

• “Perceptron studies usually made a random net of neurons deal directly
with a real physical world and did not ask the questions essential to
finding the more abstract emergent computational properties”

• Perceptrons have synced neurons, all the updates happen at the same
time for all neurons.

1.2 Memory Storage

We want to store a series of states {V s}n1 . We set:

Tij =
∑
s

(2V s
i − 1)(2V s

j − 1) (5)

With Tii = 0, from this we get:

∑
j

TijV
s′

j =
∑
s

(2V s
i − 1)

∑
j

(2V s
j − 1)

 ≡ Hs′

j (6)

The mean value of the bracketed term is 0 unless s = s′, for which the
mean is N/2. This psuedoorthogonality gives:∑

j

TijV
s′

j = ⟨Hs′

j ⟩ ≈ (2V s′

i − 1)
N

2
(7)

Which is positive if V s′

i = 1 and negative if V s′

i = 0. Aside from noise
from terms with s ̸= s′ the stored state should be a stable point of the system.

They claim:



HOPFIELD NETWORKS 3

Such matrices Tij have been used in theories of linear associative nets
to produce an output pattern from a paired input stimulus, S1 → O1.
A second association S2 → O2 can be simultaneously stored in the
same network. But the confusing simulus 0.6S1 + 0.4S2 will pro-
duce a generally meaningless mixed output 0.6O1 + 0.4O2 Our model,
in contrast, will use its strong nonlinearity to make choices, produce
categories, and regenerate information and, with high probability, will
generate the output O1 from such a confusing mixed stimulus.

The authors note that Hebbian learning is capable of producing Tij as
above.

1.3 Collective behavior of the model

To see there are stable limit points we show that there is an energy function
associated with this model that decreases as the model updates.

First assume Tij = Tji
3 and define the following energy: 3 Without this assumption the change

in energy can be decomposed into two
terms, one which is always negative and
another which is the same if Tij = Tji and
stochastic with mean 0 if not

E = −1

2

∑∑
i ̸=j

TijViVj (8)

Then the change in energy due to a change in Vi is:

∆E = −1

2
∆Vi

∑
i̸=j

TijVj (9)

Which is always negative4 so E is monotonically decreasing, which indi- 4 If the change in Vi is positive then Vi = 1
so by 7

∑
i ̸=j

TijVj is negative and thus their

product is negative. The reverse holds also.

cates stable limit points.
This is isomorphic to an Ising spin glass model with symmetric couplings,

for which it is known there many locally stable states5. 5 Scott Kirkpatrick and David Sherrington.
Infinite-ranged models of spin-glasses.
Physical Review B, 17(11):4384, 1978

For non-symmetric models showing that locally stable limit points exist is
non-trivial 6, but some justification is given: 6 Tianping Chen and Shun Ichi Amari.

Stability of asymmetric hopfield networks.
IEEE Transactions on Neural Networks, 12
(1):159–163, 2001

Why should stable limit points or regions persist when Tij ̸= Tji? If
the algorithm at some time changes Vi from 0 to 1 or vice versa, the
change of the energy defined in 8 can be split into two terms, one of
which is always negative. The second is identical if Tij is symmetric
and is ”stochastic” with mean 0 if Tij and Tji are randomly chosen. The
algorithm for Tij ̸= Tji therefore changes E in a fashion similar to the
way E would change in time for a symmetric Tij but with an algorithm
corresponding to a finite temperature.

1.3.1 Simulation test of stability

To investigate the models behaviour they run Monte Carlo simulation of the
asymmetric model with number of neurons N = 30 7 7 They also run experiments with 100 neu-

rons, but were stymied by computational
issues.

They found:

• The system would not ergodically8 wander through the state space 8 Visiting all states

• The system would settle into limiting behaviors, the most common
being a stable state

• 50 trials with a particular random T would result in 2-3 end states:

– The system would settle into stable states, a few end states collected
all flow from the initial state space
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– Or a simple cycle might occur A → B → A → ...

– Chaotic wandering in a small region of the state space, but with
the wandering happening within a small Hamming distance of a
particular state.

The upshot is: even if Tij ̸= Tji this could act as a physical addressable
memory.

1.3.2 Simulation test of memory

The system is started at each nominally “remembered state” and the system is
allowed to run forward. This is what they found:

• About 0.15N states can be “remembered”

• For a fixed number of neurons, as the amount of memories required to
be remembered increased, the number of states that evolved to stable
states decreased

• The amount of reliably recoverable memories increases with the number
of neurons

• Given arbitrary starting points 85% end in assigned memories, 10%
end in stable states with no obvious meaning, 5% end in stable states
near assigned memories Corrupting known memories: if the Hamming
distance between a corrupted state and its assigned memory is ≤ 5 then
the state evolved to its nearest memory 90% of the time, reducing to
20% of the time if the distance is ≤ 12

The authors describe it as:

The phase space flow is apparently dominated by attractors which are
the nominally assigned memories, each of which dominates a substantial
region around it. The flow is not entirely deterministic, and the system
responds to an ambiguous starting state by a statistical choice between
the memory states it most resembles.

• New memories can be added to Tij but adding more than capacity
causes all memory states to be irretrievable unless there is a way of
forgetting.

• With N = 100 a hamming distance of about 50 ± 5 is required for
memories to be treated as distinct with certainty.

References

Tianping Chen and Shun Ichi Amari. Stability of asymmetric hopfield net-
works. IEEE Transactions on Neural Networks, 12(1):159–163, 2001.

Scott Kirkpatrick and David Sherrington. Infinite-ranged models of spin-
glasses. Physical Review B, 17(11):4384, 1978.


	Introduction

