
Last Chapter
Computed statistics of preactivations for a deep neural network without activation
functions
Using Wick contractions and the recursive structure of the network we were able to
understand the effect of the initialization scheme, depth, width on preactivation
correlators
This highlighted the importance of critical initialization hyperparamters and a
sufficiently small depth-to-width ratio in order for the networks outputs to be "well
behaved"

In This Chapter
Overall goal is to discover how a particular neural network learns from a dataset. To
that end they start by investigating how ensembles of neural networks behave at
initialisation, as a function of the data.
By doing this they hope to isolate the typical behavior of a neural network, and how
any particular neural network might fluctuate from this typicality.
In the infinite width limit NNs become GPs (with a fixed kernel) and show reduced
capacity for representation learning. To investigate what happens in the large but
not infinite width regime, they propose to use a  expansion.
They proceed recursively, going layer by layer.

First Layer

Next step: Two derivations of the distributions of the first-layer preactivations at
initialisation.

1/n



Via Wick Contractions

Starting with one-point correlator:

Since bias and weights have 0 mean. In fact all odd-point correlators of  vanish
because there are always an odd number of biases or weights left unpaired under Wick
contractions.

For two-point correlator:

This is a function of the two samples.  and represents the two-point
correlations of preactivations in the first layer between different samples.

Higher-point correlators can be found similarly, here for the four-point correlator:

The end result is the same as Wick-contracting 's with the variance given by (4.7).
recalling chapter 1, we remember that can be summed up by saying the connected four-
point correlator vanishes (since the 's are gaussian). Similarly all higher-point
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correlators also vanish. So all correlators can be generated from a Gaussian with zero
mean and the variance (4.7).

So to write down the first-layer action we need the inverse of this variance:

Via Hubbard-Stratonovich
Instead of computing correlators and backing out the distribution that generates them,
instead we can work directly with the distribution. Using the formal expression for the
preactivation distribution worked out in the last chapter:

We could try to eliminate some of the integrals over the model parameters with respect to
the constraints from the delta-functions, but it can become confusing due to the different
numbers of model-parameter integrals and delta-function constraints.



So to simplify things we can use the Hubbard-Stratonovich transformation, using the
following integral representation of the Dirac delta function:

Completing the square for the biases  and weights  gives a quadratic action in model
parameters:

Then the weights and biases can be integrated out:

In effect what we have done is swap the delta-function constraints and model parameters
for the Hubbard-Statonovich variables  which have a quadratic action (the first term
above) and a linear interaction with the preactivations (second term).

Note the inverse variance here is the first layer metric (4.8) in the wick contraction
derivation (restoring layer superscripts):
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Then we can complete the square again, and integrate out the H-S variables to recover
the previous result:

Quadratic action in action

Now given this action representation for the distribution of the first layer preactivations
we can compute some expectations, in particular we can compute the expectation of two
actiavtions on the same neuron, and the expectation of four activations either with all on
the same neuron or pairs on two different neurons:



The second equality is because the probability distribution factorises for each neuron (
). The third equality comes about because the first set of integrals are all

trivial, and from renaming the dummy variables . The final equality uses the
notation:

This is a gaussian expectation with variance  and an arbitrary function )
over variables with sample indices only. For this chapter we consider computations
complete when they can be reduces to gaussian expectations like these.

Using the shorthand , the computation above can be expressed simply as:

This can quite easily be generalised to correlators of more than two activations:

It's clear that each neuron factorises and gives seperate integrals. In deeper layers the
preactivation distributions are nearly-Gaussian and things get a bit more complicated.

Second Layer: Genesis of Non-Gaussianity
The joint distribution of the first and second layer preactivations is given:

e(x+y) = exey

zi1:α1
→ zα1

g F(zα1
, . . . , zαm

σα ≡ σ(zα)

E [σ(z
(1)
zi1

;α1
)σ(z

(1)
zi1

;α2
)] = ⟨σα1

, σα2
⟩G(1)



We evaluated the last term in the previous section, for the conditional distribution we
have:

We then marginalise over the first layer preactivations:

First we need to figure out how to treat the conditional distribution, then we need to
figure out how to integrate out the .

Second layer conditional distribution

If we replace the layer indices   and exchange the network inputs for the first layer
preactivations  we can evaluate this in exactly the same way as we evaluated
the first-layer distribution:

Where the second-layer metric  is a random variable that depends on :


So the second layer conditional distribution is a Gaussian with a variance which is a
random variable. This random variable has a mean, and they measure the fluctuation of
the second-layer metric by subtracting this mean from the R.V:
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Which by construction has mean zero when averaged over first layer preactivations.

The variance of the fluctuation is given by its two-point correlator, remembering the
expression for the gaussian integrals of the two and four activations on the same neurons
from above:

At the end we introduce the four-point vertex  which is
depends on four points of input data and is symmetric under exchanges of sample
indices: .

Here we also see that as for , since  is of order one, the metric fluctuation will
become more and more suppressed. We see that the metric fluctuation will become more
and more Gaussian due to the central limit theorem. In the limit as  tends to infinity the
fluctuation will dissapear.

There are now two ways of integrating out  and obtaining , one brute-force
involving lots of wick contractions, and one clever:

Wick Derivation Results:
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Expectation of a function under a nearly Gaussian distribution


Clever derivation:

Plug the conditional distribution (4.35) into the marginalization equation (4.34):

Use the previously discussed decomposition of the stochastic metric into its mean and
fluctuating parts:

To write a Neumann series for the inverse of this:

Then put this into the exponential of the marginal distribution in (4.53):



Then the denominator becomes:


The first line is expressing the determinant as a Gaussian integral and the second is
substituting in (4.56).

Now we plug these two expressions back into (4.53) to get:

(Not sure about this) Where they have used that  and 

. Then taking log:
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They mention that one might wonder why they drop the  correction to the quadratic
coupling, but keep the quartic coupling despite it being of the same order. They mention
that such a correction is a subleading contribution to the two-point correlator, while the
quartic coupling gives the leading contribution to the connected four-point correlator. In
short, the first is a minor quantitative effect, while for the latter there will be observables
whose leading contributions come soley from the quartic coupling.

Nearly-Gaussian action in action

Using a previously derived equation for the expectation of a function under a nearly-
gaussian distribution they show how to obtain the expectations of two activations
on the same neuron, and four activations: two pairs on seperate neurons and all four
on one neuron.

There is a non-trivial effect from the quartic coupling , and pairs of neurons
can only correlate by adding a quartic action, highlighting the importance of
finite width for feature learning.

They give a formula for the covariance between two functions that depend on
subsamples of the data:


Deeper Layers: Accumulation of Non-Gaussianity

By following the same procedure as the one for the second-layer distribution we can
proceed to find the marginal distribution of an arbitrary layer. Care must be taken
however as the previous layers will no longer be gaussian.

Recursive strategy: Reconstruct the -th layer marginal distribution out of the 
-th layer preactivation correlators, then use the -th layer action to evaluate

the expectations of the -th layer activations that occur in the expressions for the 
-th layer preactivation correlators.
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Recursion

Using previous work they are able to derive expressions for the two-point correlator
and the connected four-point correlator of the -th layer in terms of the
correlators for the -th layer. These correlators can be used to obtain the -th
layer marginal.
This can be done efficiently by finding the action of the preactivation distribution.

Action

The preactivation function can be written in terms of an action 

The ansatz for the action:


The coefficients are data-dependent couplings, and the results in (4.2) can be
generalised to the -th layer


The higher order terms  can only be ignored iff the quartic coupling  and
higher order couplings are perturbatively small, which they show next.

Large-width expansion

The calculations needed for the recursive strategy simplify in the wide regime, with
a larger number of neurons per layer. (i.e the regime in which the networks are
"practically usable and theoretically tractable").
To be brief, when in this regime the order of the mean metric  and four-point
vertex  is order one at layer  and remains order one at layer 
They derive recursion relations for this mean metric and four-point vertex:
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"The additional finite-width corrections given by the higher-order terms in the action
can change quantitative results but should not really exhibit qualitative differences."
- Is this true?

Marginalisation rules
In this section they show how to perform marginalisations over a subset of the data
or a subset of neurons.

Over Data:
Allows us to simplify the recursion for the two-point correlator by
considering integrals only over the two samples of interest rather than
using  integrals.

Over neurons:
Can be used to overcome some perturbation scaling issues by integrating
over a reduced set of neurons. (See the book)

The couplings depend on the number of neurons in the action, and they show how
how to account for this. The key takeaway is that observables of the -th layer
depend on the number of neurons in that layer.

Subleading Corrections
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