
Deep Linear Networks
By considering networks with many layers and no activation function we can introduce
the machinery that will be used to analyse more general networks later. In particular this
chapter shows how layer-to-layer recursions determine the statistics (M-point
(connected) correlators) of neural networks at initialisation, and solves the recursion
exactly for selected correlators. These correlators are measurements of NN behaviour
and ways of controlling these behaviors are discussed.

In this chapter we consider NNs with linear transformations at each layer with no biases:

These layers are initialised independently according to a normal distribution with mean 0:


Deep linear networks represent a smaller set of functions than generic linear
transformations: consider a 2 layer neural network with inputs , outputs  and a hidden
layer with one neuron. This bottleneck means the network can represent only a subset of
the transformations given by all  matrices.

Similarly, the statistics of a deep network differ from the statistics of a one-layer network:
each layer has gaussian , but the product  is in general non-gaussian.

In this chapter we want to determine:

Which (like any distribution) is determined by its M-point correlators.
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It is trivial to show that  by taking the expectation of (3.2). Similarly its possible
to show that the odd M-point correlators is also .

Criticality
Recursion for the two point correlator:

Writing the inner product of  and  as:

We get:

Next to evaluate the recursion for an arbitrary layer:
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Notice that for any layer the two-point correlator vanishes unless the neural indices 
are the same and is this proportional to the kronecker delta .

By considering the last sentence and looking at this for a while you should be able to see
that:

and that:

So the quantity  can be thought of as the average inner product of activations at a
given layer, averaged over neurons. This depends on the sample indices  only so 

 can be interpreted as the covariance of the two inputs after passing
through layer .

Now it is easy to see that  and that 

Note: , the width of the network at each layer, in the initialisation of the layers has
dropped out: indicating that this is the proper way of scaling the variance.

Criticality: Physics

Now we can see that if  the covariance will vanish to  and if  the
covariance will blow up to . The authors refer to any fixed point approached
exponentially quickly as a trivial fixed point. Such behavior would make it difficult for the
NN to approximate the desired function.

If instead  we have that the variance is preserved and the covariance (since it is
not tending exponentially quickly towards anything) tends towards a non-trivial fixed
point. A setting of the initialisation hyperparameters that avoids blow up or vanishing is
called a critical initialisation hyperparameters.

Fluctuations

For zero mean gaussians the covariance completely determines the distribution, so if the
distribution  were gaussian the critical tuning of  ensures all observables
are well behaved. If this distribution isn't Gaussian then the behavior of observables that
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depend on higher-point connected correlators may not be well behaved with the tuning
that makes the covariance well behaved.

Now we consider the recursion for the four-point correlator and for simplicity only
consider correlators that depend on one input:

Recursion for the first layer:

Going from the second line to the first we take the wick contraction which yields 3
pairings of the 's (double factorial ) and used (3.4) to evaluate the
weight variance. Then evaluate the sums over the 's and substitute the the definition of
the inner product from above:

This is precisely what we'd expect for the fourpoint correlator if the preactivation
distribution were Gaussian. For deeper layers this won't be the case:
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Where we use the fact that the th layer weights are independent from the th layer
activations.

Similarly in the covariance case we notice that any layer is proportional to the factor 
 we can write:

and put all the layer dependence into  so for the first layer we get:

and the final term in the above summation becomes:

(First kronecker delta sum is  second is  and third is ) so we can rewrite the
recursion:

and then the recursion can be solved using the initial condition from above:
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Resulting physics

The point of doing this is to analyse the behavior of the four point correlator. For instance,
taking the limit as  notice that the full four point correlator becomes:

I.e in the infinite width limit the preactivation distributions are gaussian and the four point
correlator is determined by the two point correlator.

If we instead have equal hidden layer widths for all layers we get for the deviation of the
four point correlator from that in the infinite width limit:

Where we expand in  and keep the leading correction to the infinite width limit. At
criticality where  is constant we have that the correction scales proportionally with
depth and inversely with width, and is thus proportional to the depth-to-width ratio of the
network, something the authors refer to as emergent scale.

They give some examples of interpreting this correction, see the text book for more
details.

The take away point is that networks show these finite-width effects where behavior
depends on the depth-to-width ratio.

Summary:
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