
Integrating Multivariate Gaussians

Note, since K is symmetric, we can diagonalize K with orthogonal matrix  which gives 
 with eigenvalues . Knowing this:

This transforms the nested integrals above into a product of single variable gaussian
integrals:

Where the final equality is from noting that the product of the eigenvalues of a matrix
equals its determinant.

Using source terms to evaluate moments

By including a source term  we can express the generating function of a multivariate
gaussian as:

Differentiating this function with respect to the source term "brings down a power of "
so can be used to evaluate gaussian integrals with insertions:

Using this we get the following expression for gaussian integrals with an even number of
insertions :
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Using this, it is possible to derive Wick's Theorem for gaussians:

Note there are  terms in this sum. Double factorial:
https://en.wikipedia.org/wiki/Double_factorial

Connected Correlators

If we knew all the moments (or M-point correlators) of our distribution we would be able
to calculate the expectation of any analytic function (observable) via Taylor expansion.
But actually estimating these moments is challenging, for the M'th moment �M-point
correlator) we would need to measure M components of a random variable for each
sample and repeat this multiple times.

Luckily we can often specify distributions using a smaller number of quanities, for
example gaussians are constrained by their mean and covariance. These are the first and
second cumulants or connected correlators:

For gaussian distributions it can be shown that all connected correlators higher than this (
) are zero. We define nearly-Gaussian distributions as those distributions for which

the connected correlators are small.

Nearly-Gaussian Distributions

How can we link small but non-zero connected correlators (observables) to the functional
form of the distribution?

We can use actions , which define unnormalised probability distributions as so:

The action function for a standard multivariate gaussian is called the quadratic action.
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If we deform the Gaussian distribution by the addition of a small quartic term added to
the quadratic action we can recover a small non-zero four-point correlator:

Where V is a -dimensional tensor that is completely symmetric in all four
indices (hence the  term to compensate for overcounting)

Using this in conjuction with pertubative methods we can show an explicit relationship
between the 4-point correlator and the quartic coupling.

This is possible because of the small dimensionless parameter , which in future chapters
will be provided by the inverse of the width of a neural network, which will allow similar
analysis of the nearly-gaussian distributions which arise from neural networks.
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