
Summary

Abstract (copied)
At initialization, artificial neural networks (ANNs) are equivalent to Gaussian processes in
the infinite-width limit, thus connecting them to kernel methods. We prove that the
evolution of an ANN during training can also be described by a kernel: during gradient
descent on the parameters of an ANN, the network function fθ (which maps input vectors
to output vectors) follows the kernel gradient of the functional cost (which is convex, in
contrast to the parameter cost) w.r.t. a new kernel: the Neural Tangent Kernel (NTK). This
kernel is central to describe the generalization features of ANNs. While the NTK is random
at initialization and varies during training, in the infinite-width limit it converges to an
explicit limiting kernel and it stays constant during training. This makes it possible to
study the training of ANNs in function space instead of parameter space. Convergence of
the training can then be related to the positive-definiteness of the limiting NTK. We prove
the positive-definiteness of the limiting NTK when the data is supported on the sphere
and the non-linearity is non-polynomial. We then focus on the setting of least-squares
regression and show that in the infinitewidth limit, the network function fθ follows a linear
differential equation during training. The convergence is fastest along the largest kernel
principal components of the input data with respect to the NTK, hence suggesting a
theoretical motivation for early stopping. Finally we study the NTK numerically, observe
its behavior for wide networks, and compare it to the infinite-width limit.

Introduction
It's known ANN's can approximate any function with enough hidden units, but its
unknown what they converge to.

Due to highly non convex loss surface
Results suggest if the network is wide enough there are few "bad" local minima

Mystery: Why do these overparameterised models generalise well?
"seems paradoxical that a reasonably large neural network can fit random
labels, while still obtaining good test accuracy when trained on real data"
Kernel methods have the same properties!

In the infinite limit ANN's become Gaussian described by kernel, the kernel can be
used in Bayesian inference or SVM with similar results to gradient descent trained
ANNs

In this paper they show the behavior of the ANN's is described by a related
kernel, the NTK.

Contributions (copied)

We study the network function of an ANN, which maps an input vector to an output
vector, where is the vector of the parameters of the ANN. In the limit as the widths of
the hidden layers tend to infinity, the network function at initialization, converges to a
Gaussian distribution. In this paper, we investigate fully connected networks in this
infinite-width limit, and describe the dynamics of the network function during training:

During gradient descent, we show that the dynamics of follows that of the so-
called kernel gradient descent in function space with respect to a limiting kernel,
which only depends on the depth of the network, the choice of nonlinearity and the
initialization variance.
The convergence properties of ANNs during training can then be related to the
positive-definiteness of the infinite-width limit NTK. In the case when the dataset is
supported on a sphere, we prove this positive-definiteness using recent results on
dual activation functions (4). The values of the network function outside the
training set is described by the NTK, which is crucial to understand how ANN
generalize.
For a least-squares regression loss, the network function follows a linear
differential equation in the infinite-width limit, and the eigenfunctions of the
Jacobian are the kernel principal components of the input data. This shows a direct
connection to kernel methods and motivates the use of early stopping to reduce
overfitting in the training of ANNs.
Finally we investigate these theoretical results numerically for an artificial dataset (of
points on the unit circle) and for the MNIST dataset. In particular we observe that
the behavior of wide ANNs is close to the theoretical limit.

Neural Networks
In this paper, fully connected ANNs with layers each with neurons
and with a Lipschitz, twice differentiable nonlinearity function with bounded
second derivative (these assumptions simplify the proofs but "do not seem strictly
needed")

This paper focusses on the realization function, which maps parameters to
functions.

There is a seminorm on the function space defined for a fixed distribution (in this
paper assumed to be a empirical distribution on a finite dataset):

In remark 1 the importance of the width of the neural network is emphasised, in
particular having the factor in the initialisations are needed to get the right

fθ

θ

fθ

fθ

fθ

fθ

fθ

0, . . . ,L n1, . . . ,nL

σ

pin

⟨f, g⟩pin = Ex∼pin [f(x)⊺g(x)]

1
√nl

asymptotic behavior as . However using these factors reduce the
influence of the connection weights during training when is large.

Kernel Gradient
Goal of training an ANN -> optimise in the function space wrt some cost function.

Even for convex cost function the composite cost (cost composed with
realisation function) can be highly non-convex

They show the network function follows kernel gradient descent wrt the Neural
Tangent Kernel
A multidimensional kernel is a map which maps pairs of
points to symmetric matrices. It defines a bilinear map on the function space

This kernel is positive definite wrt the seminorm above if
They denote by the dual of the function space with respect to the distribution
, the set of linear forms of the form for some . Which is
chosen doesn't matter in this paper.

Partial application of the kernel is a function in so we can map () from a
dual element to a function in with values:

The cost functional only depends on the values of at the data points (finite in this
setting), so the cost functional is in and its (functional) derivative at a point can
be viewed as an element of the dual.

It is an expectation wrt p^{in}, but im not sure how it's in the dual, because how
is it a linear form if its being evaluated at
Then there exists a dual element s.t

The kernel gradient is the application of to the functional derivative of the cost
function.

Becauase of the kernel this can be generalised (as opposed to the functional
derivative) to values outside of the dataset.

A function "follows" the kernel gradient descent with respect to K if it satisfies the
differential equation:

During kernel gradient descent the cost function evolves according to a differential
equation depending on the dual element defined above.

If the kernel is positive definite wrt then covergence to a critical point is
guaranteed.

n1, . . . ,nL → ∞

nl

fθ

K : Rn0 × Rn0 → RnL×nL

⟨f, g⟩K = Ex,x′∼pin [f(x)⊺K(x,x′)g(x)]

∥f∥pin > 0 ⟹ ∥f∥K > 0

F
∗ pin

μ : F → R μ = ⟨d, ⋅⟩pin d ∈ F d

F ΦK

μ fμ ∈ F

fμ.i(x) = μKi,⋅(x, ⋅) = ⟨d,Ki,⋅(x, ⋅)⟩pin

f

F f0

f0

d|f0 ∈ F ∂ in
f C|f0 = ⟨d|f0 , ⋅⟩pin

ΦK

∂tf(t) = −∇KC|f(t)

K ∥⋅∥pin

Random Functions approximation

A kernel can be approximated by a choice of random functions sampled
independently from any distribution on whose (non-centred) covariance is given
by
Using these random functions the above kernel gradient descent can be studied
The random functions defined the following random linear parametrisation:

With partial derivatives:

Question: Why does the right-hand side equal the kernel gradient wrt

Neural Tangent Kernel
For ANN trained using gradient descent on the composition of the cost and
realisation function, the network function follows the negative kernel gradient

P f (p)

F

K

F lin : θ → f lin
θ =

1

√P

P

∑
p=1

θpf
(p)

∂θpF
lin(θ) =

1

√P
f (p)

~
K

