
Introduction
Perceptrons are incapable of representing a rich set of functions �Minsky and Papert
1969�
Feed forward networks perform well on a range of tasks
Does this reflect an inherent ability of FF�NNs to represent arbitrary functions, or are
they limited to a small set of functions that we just happen to have tested them on,
albeit larger than the set of functions perceptrons can express.
NN fans use Kolmogorov's superposition theorem to justify using neural networks

This states that every multivariate continuous function can be expressed as a
finite composition of continuous functions of a single variable and the

operation of addition:
BTW this looks a bit like a Deep Set
But this requires a different unknown transformation for each , we use the
same activation functions for multiple 's! The theorem states a particular
upper bound on hidden units needed for representation, in NNs we increase
the number of hidden units until we get good performance.
NN's also put constraints on the smoothness (continuous derivatives) of the
activation functions and hidden units, something Kolmogorov's representations
don't have.
NN's are parameterised, the function  here is as complex to describe in bits
as  itself.
However there is a version of Kolmogorov's ST that seems to be relevant for
NNs https://direct.mit.edu/neco/article-
pdf/3/4/617/812230/neco.1991.3.4.617.pdf
"It gives a possibility theorem but doesn't explain the performance"

Given particular constraints on the hidden units or activation functions of a neural
network its possible to get theoretical results that show these networks can express
arbitrary functions but these aren't useful for general deep networks
The paper uses the Stone-Weierstrass Theorem and the cosine squasher of Gallant
and White to show that standard multilayer FF�NNs using arbitrary squashing
functions.

Main results
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This sets out the class of output functions for single hidden layer NNs with
squashing at the hidden layer and no squashing at the output layer
Squashing function, following a affine transformation

Definition 2.3 - Squashing functions

Squashing functions are functions which map  such that the function tends
to 1 from below as the input  and tends to 0 from above as the input 
A function is measurable if it preserves measurability, i.e if , if  is
measurable, then  is measurable.
These Sigma-Pi networks are a more complex generalisation of the NNs we know, I
don't think they are widely used anymore due to exploding numbers of parameters.

Definition 2.5

The class of output functions for single hidden layer NNs is Borel Measure
Measurable( ), and if the activation function is continuous then it is continuous (

). .
The authors claim that almost all functions of interest in applications are continuous.

Definition 2.6

Gives the definition of denseness, the  is dense in  if for every element 
of  there exists an element of  which is  close to  w.r.t some metric.
In otherwords an element in  can approximate an element of  to an arbitrary
degree of accuracy

Definition 2.7

Compact is a generalisation of closed and bounded
Closed as in it contains its endpoints (or limit points for seqeuences in the set)
Uniform convergence means we don't need to know the  the functions are
evaluated at, they are getting close on the whole domain.

Theorem 2.1

The Sigma-Pi networks, with any continous nonconstant function as activation
function, are uniformally dense on compact subsets of the continuous functions
from .
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We want to apply the Stone-Weierstrass Theorem to show the sigma-pi networks
are dense on compacta in 

 an arbitrary compact set in 
For any continuous non-constant function  the set of sigma-pi is a subalgebra of 

Show it seperates points, using the fact for any points  with  we can
find affine transformation s.t 
Show there are constant, non-zero functions , in a similar way
Then stone-weierstrass applies.

Definition 2.8

Two measurable functions are (measure) -equivalent if they only differ on a set of
inputs of measure 0. �We can change the values of the function on this set without
changing its integral, alternatively it has 'arbitrarily small volume')

Definition 2.9

This defines a metric st.th two functions are close in metric if there is only a
vanishing amount of measure on sets where they differ

Theorem 2.2

"Single layer sigma-pi networks can approximate any measureable function"

Proof Sketch

This proof use lemma A.1� Continuous functions are  dense in the set of
measurable functions

i.e we can approximate measurable functions with continuous functions
Given a continuous nonconstant function (activation) it follows from Theorem 2.1
and lemma 2.2 that the sigma-pi networks using that "activation" are  dense in the
set of continuous functions. �Uniformly dense → sequences converge uniformly)
Since the continuous functions are dense in the set of measureable functions the
result follows after applying the triangle ineq.

Lemma A.2

For a continous squashing function we can approximate this function with a sigma
network using an arbitrary squashing function

Theorem 2.3
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For arbitrary squashing functions sigma-pi networks are uniformly dense on
compact sets of  and dense in the measure sense on 

Proof Sketch

From Theorem 2.2 and Lemma 2.2 we only need to show that  is uniformly
dense on  for some continuous squashing function F. �I.e need to show the
uniformity condition for lemma 2.2 so theorem 2.2 applies showing we are close to
measurable functions in the  sense).
So we need to show functions made up of products of  composed with affine
transformations can be uniformly approximated by functions in 
They show this Using lemma A.2

Theorem 2.4

They then show that the simpler (and more interesting to us) sigma networks are
universal approximators.

They do this by expressing the sigma-pi networks as trigonometric polynomials
This is possible because any continuous squashing function can be
approximated by a sigma-pi network with an arbitrary squashing function
(lemma A.2�

 Show we can approx  with a member of 
 Show we can approx weighted sum of  functions with a member of 

 Then use this to show  is uniformly dense on compacta of 
�Lemma A.5�

 Do this by noting that trigonometric polynomials 
are sigma pi networks and apply theorem 2.1

 The apply trig identity  to get to
a sigma network

 Then apply Lemma A.5 � lemma 2.2 to show  is  dense in , then
triangle ineq to show  dense in 

After this they have some corollaries that extend these results to

 spaces
Boolean Functions
Functions with finite support
Multi-output networks
Multi-output, multi layer networks
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Discussion and conclusion

Have these results been extended to networks with inductive biases �RNNs, LSTMs,
CNNs?�

I think they have been extended to GNNs
And multi-layer single output NNs

These results show that functions of the form of a NN can approximate, they say
nothing about the ability of SGD (for instance) to find functions that well
approximate the function we want

"We have thus established that such "mapping" networks are universal
approximators. This implies that any lack of success in applications must arise from
inadequate learning, insufficient numbers of hidden units or the lack of a
deterministic relationship between input and target."

Is this true? We know we can have "too many" hidden units, or the network
have hidden units distributed in a non-useful way (too wide)

How to increase the number of hidden units as the amount of data increases

Is this relevant in the age of "scale"
"I suspect that scaling up neural networks — these days, I don’t hesitate to
train a 20 million-plus parameter network (like ResNet-50� even if I have only
100 training examples — has also made them more robust."
(https://read.deeplearning.ai/the-batch/the-trouble-with-reinforcement-
learning/)

How to increase amount of data/number of hidden units as input space grows

https://read.deeplearning.ai/the-batch/the-trouble-with-reinforcement-learning/

