
Monte Carlo Gradient Estimation in Machine Learning
Introduction

Computing the gradient of an expectation of a function is as the core of many tasks
needed for the modern world to function

Management of supply chains
pricing and hedging financial instruments
control of traffic lights
ML and AI

So figuring out how to do this is important, this paper is about methods to acheive
this and trade-offs between different methods

In this paper the central question is computing :

A "mean-value analysis" where we take the average of a function  with structural
parameters  over an input distribution  with distributional parameters .  is refered
to as the cost and  is refered to as the measure. They restrict their review to
settings where the measure is continuous on its domain and differentiable with respect to
is distributional parameters. (i.e it is nicely behaved)

This allows them to treat a wide range of problems from: queuing theory, variational
inferene, portfolio management, reinforcement learning...

We want to learn the distributional parameters , which makes the derivative of  with
respect to  important to us.

Challenges:

We can often not evaluate this expectation in closed form,  is high dimensional and
so quadrature doesn't work well

Quadrature here means approximation of the integral with a function
We may be requesting a gradient with respect to a high dimensional parameter
vector
The cost function may not be differentiable, or may be a black box (we can only
observe the output and we know nothing else about the function)
Ideally we want to have a quick (parallelisable) and accurate way of estimating this
gradient, that minimises the number of evaluations of the cost
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They propose to overcome this using monte carlo estimators of the integrals and
gradients

Monte Carlo and Stochastic Optimisation
We can evaluate an integral like  by using Monte Carlo methods: We draw independent
samples  from  and then computing:

 is a random variable as it depends on the samples from , we can repeat the
process and collect multiple samples of .

As long as we can write the integral in the form of  and sample from  we can
utilise Monte Carlo estimation.

There are four properties that we look for in a Monte Carlo estimator:

 Consistency: 
As the number of samples  is increased, the estimate  should converge to

. Usually this is a consequence of the law of large numbers
 Unbiasedness: 

If we repeat this estimation process multiple times, the estimate should be centred
on the actual value of the integral. I.e it should satisfy

We want unbiased estimators as we can guarantee they converge. Sometimes we
might used biased estimators on rare occasions, however.

 Minimum Variance 
 is a random variable, so it stands to reason that we would prefer the estimator

with the minimal variance. There are two concrete reasons we would want this:
 The resulting gradient estimates are more accurate
 Low variance gradient estimators make learning more efficient, allowing

smaller learning step sizes and thus (potentially) allowing a smaller overall
number of steps to reach convergence (fasting training).

 Computational efficiency: 
For obvious reasons we will prefer the estimator that takes less computational
resource to evaluate. Usually we are looking to estimators that are linear in the
number of parameters, and that can parallelised.

The gradient of  with respect to  gives us two things:
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 It can help explain the way the cost changes with a given parameter
 It can be be used to optimise the distributional parameters 

The typical stochastic optimisation loop is as follows

Note: stochastic gradient descent can be considered doubly stochastic optimisation
because we are using stochastic approximation in both the simulation output ( ) and in
the optimistion step.

There are many applications of this (which the paper goes into in more depth):

Variational Inference
Reinforcement Learning
Sensitivity Analysis
Discrete Event Systems and Queuing Theory
Experimental Design

Intuitive analysis of Gradient Estimators
Here are two ways to calculate the desired gradients:

Derivatives of measure� Differentiation of the measure . Estimators of this
type include score function estimator and measure-valued gradient.
Derivatives of Paths� Differentiation of the cost  which "encodes the pathway
from parameters , through the random variable , to the cost value." In this class ae
pathwise gradient, harmonic gradient estimators and finite differences, and
Malliavin-weighted estimators.

In this section of the paper they focus on score function, pathwise, and measure-valued
gradient estimators. They have all four of the desired properties but differ on their
variance properties and computational costs.
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Takeaway from this section:

Usually we cannot ascribe a universal ranking to gradient esimators, they will have
different orderings of performance depending on the parameters of the cost.
Measure-valued derivative estimator requires  samples for  parameters.
If the cost function isn't differentiable, pathwise gradient won't be usable.

In short when choosing an unbiased gradient estimator we should pay attention to:

 computational cost
 whether the cost function is differentiable or not
 how the gradient estimator changes as the cost function changes
 are there effective variance reduction techniques?

Score Function Gradient Estimators
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This derivative of measure-type estimator goes by:

score function estimator
likelihood ratio method
REINFORCE estimator

The score function is the derivative of the log of a probability distribution, with respect to
the parameters of that distribution:

By rearranging this we can use this identity to rewrite integrals of gradients as an
expectation under the measure .

The score function is the central quanity in maximimum likehood estimation. A property
that we use later is that it's expectation is zero:

The variance of the score, known as Fisher information, is an important quanitity for
establishing the Cramer-Rao lower bound.

Deriving the Estimator

By using the identity above we turn an integral involving the derivative of the measure 
into an expectation under that measure which we can use Monte Carlo estimation for.

We can add any constant  we like to  and still obtain an unbiased estimator, owing to
the fact the score function has zero expectation. This will be shown to be useful later for
a simple, effective form of variance reduction.

Estimator properties

The score-function estimator relates the overall gradient to the gradient of the log
measure reweighted by the cost function. "This intuitiveness is why the score function
estimator was one of the first and most widely-used estimators for sensitivity analysis."
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Unbiasedness

Whenever the interchange between differentiation and integration is valid, this will yield
an unbiased estimator. The interchangeability depends on conditions where it is possible
to interchange limits and integrals, and is in most cases relies on the dominated
convergence theorem or the Leibniz integral rule.

The following conditions must be satisfied:

The measure  is continuously differentiable with respect to its parameters.
The product  is both integrable and differentiable for all parameters.
There exists an integrable function  such that 

These assumptions usually hold in machine learning applications.

Absolute Continuity

We can rewrite the estimator another way, showing the importance of absolute
continuity:

The ratio  is similar to the one that appears in importance sampling, and makes a
similar assumption of absolute continuity:  whenever , a condition
that is broken when, for instance,  controls the support of the distribution, such as the
uniform distribution .

Estimator Variance

From the work in the intuitive analysis section we can see that the variance of the score-
function estimator can vary widely with the cost function.

Writing  we can write the variance of the estimator for  as follows:

p(x; θ)

f(x)p(x; θ)

g(x) supθ||f(x)∇θp(x; θ)||1 ≤ g(x) ∀x

∇θEp(x;θ)[f(x)] = ∫ ∇θp(x; θ)f(x)dx

= ∫ lim
h→0

p(x; θ + h) − p(x; θ)

h
f(x)dx

= lim
h→0

1

h
∫ p(x; θ)

p(x; θ + h) − p(x; θ)

p(x; θ)
f(x)dx

= lim
h→0

1

h
∫ p(x; θ)(

p(x; θ + h)

p(x; θ)
− 1)f(x)dx

= lim
h→0

1

h
(Ep(x;θ)[ω(θ,h)f(x)] − Ep(x;θ)[f(x)])

ω(θ,h)

p(x; θ + h) > 0 p(x; θ) > 0

θ

U[0, θ]

μ(θ) := Ep(x;θ)[η̄N ] N = 1

Vp(x;θ)[η̄N=1] = Ep(x;θ) [(f(x)∇θ log p(x; θ))2] − μ(θ)2



which makes the connection between the variance and the dimensionality of the
parameters clear, since the derivative of the score has the same dimensionality as the
parameters.

We can also write the variance as follows:

which, for a fixed , shows the dependency between variance and the importance weight 
.

There are three sources of variability in the estimator:

Variance from the importance ratio:

For fixed :

If we have a "near-failure" of absolute continuity, where  then the
integral in the above expectation will be still be finite, but will be very large.

Variance from the dimensionality of the parameters

�The derivation of this result is in the paper) "As the dimensionality increases, we find that
the importance weights converge to zero, while at the same time their expectation is one
for all dimensions. This difference between the instantaneous and average behaviour of 

 means that in high dimensions the importance ratio can become highly skewed,
taking large values with small probabilities and leading to high variance as a
consequence."

Variance from the cost function

The cost function contributes to the variance, if the cost function is a sum of  terms,
each which bounded variance, then the variance of the estimator will be of order .
One way of reducing the variance is to determine which parts of the cost function do not
influence the parameters, as these will increase the variance and can be gotten rid of.

Computational Considerations

The score function can also be expressed:
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The score function gradient can be interpreted as a measure of covariance between the
cost function (the second term the covariance introduces is zero because the expectation
of the score is zero) and the second line is an application of the Cauchy-Schwartz
inequality.

If the cost function is highly variable, this can lead to a highly variable gradient. To
overcome this we usually try to constrain the cost function by normalisation or bounding
its value via clipping.

Because only the final value of the cost is needed to calculate this estimator, we can use
a wide range of potenial types of functions as a cost: differentiable functions, discrete
functions, dynamical systems, black box simulators. Overall the computational cost of the
score-function estimator is low:  for -dimentional , where  is the cost of
evaluating the cost function,  is the number of samples used in the estimator.

Considerations to take are:

Any type of cost function can be used, as long as we can evaluate them easily
The measure must be differentiable with respect to its parameters
We need to be able to sample from the measure
This can be applied to both discrete and continuous distributions
We can implement this estimator with a single sample if needed
When using this estimator try to use variance reduction too.
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